Money A2Z Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    In mathematics, the factorial of a non-negative integer , denoted by , is the product of all positive integers less than or equal to . The factorial of also equals the product of with the next smaller factorial: For example, The value of 0! is 1, according to the convention for an empty product. [1]

  3. Factorial number system - Wikipedia

    en.wikipedia.org/wiki/Factorial_number_system

    From this it follows that the rightmost digit is always 0, the second can be 0 or 1, the third 0, 1 or 2, and so on (sequence A124252 in the OEIS).The factorial number system is sometimes defined with the 0! place omitted because it is always zero (sequence A007623 in the OEIS).

  4. Factorial experiment - Wikipedia

    en.wikipedia.org/wiki/Factorial_experiment

    The values 1 and 0; the values 1 and −1, often simply abbreviated by + and −; A lower-case letter with the exponent 0 or 1. If these values represent "low" and "high" settings of a treatment, then it is natural to have 1 represent "high", whether using 0 and 1 or −1 and 1. This is illustrated in the accompanying table for a 2×2 experiment.

  5. Gamma function - Wikipedia

    en.wikipedia.org/wiki/Gamma_function

    Calculus, mathematical analysis, statistics, physics. In mathematics, the gamma function (represented by Γ, the capital letter gamma from the Greek alphabet) is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers except the non-positive integers.

  6. Stirling's approximation - Wikipedia

    en.wikipedia.org/wiki/Stirling's_approximation

    Stirling's approximation. In mathematics, Stirling's approximation (or Stirling's formula) is an asymptotic approximation for factorials. It is a good approximation, leading to accurate results even for small values of . It is named after James Stirling, though a related but less precise result was first stated by Abraham de Moivre.

  7. Derangement - Wikipedia

    en.wikipedia.org/wiki/Derangement

    In other words, a derangement is a permutation that has no fixed points . The number of derangements of a set of size n is known as the subfactorial of n or the n- th derangement number or n- th de Montmort number (after Pierre Remond de Montmort ). Notations for subfactorials in common use include ! n, Dn, dn, or n ¡.

  8. Wilson's theorem - Wikipedia

    en.wikipedia.org/wiki/Wilson's_theorem

    Wilson's theorem. In algebra and number theory, Wilson's theorem states that a natural number n > 1 is a prime number if and only if the product of all the positive integers less than n is one less than a multiple of n. That is (using the notations of modular arithmetic ), the factorial satisfies. exactly when n is a prime number.

  9. Double factorial - Wikipedia

    en.wikipedia.org/wiki/Double_factorial

    In mathematics, the double factorial of a number n, denoted by n‼, is the product of all the positive integers up to n that have the same parity (odd or even) as n. [1] That is, Restated, this says that for even n, the double factorial [2] is while for odd n it is For example, 9‼ = 9 × 7 × 5 × 3 × 1 = 945. The zero double factorial 0‼ ...